

Tetrahedron: Asymmetry 11 (2000) 1859-1868

TETRAHEDRON: ASYMMETRY

Stereochemical course of the hydrogen migration in the boron trifluoride etherate-catalyzed rearrangement of 1,1-disubstituted epoxides

Noriyuki Hara, Akiyoshi Mochizuki, Akinori Tatara and Yoshinori Fujimoto*

Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan

Received 24 September 1999; accepted 3 April 2000

Abstract

Mechanistic studies on the BF₃·Et₂O-catalyzed rearrangement of optically active, regioselectively deuterated 1,1-disubstituted epoxides to aldehydic products revealed that the two hydrogens migrate at the migration terminus with opposite stereochemical preferences, i.e. the hydrogen *anti* to the bulky substituent prefers to migrate with inversion of configuration, whereas the hydrogen *syn* to the bulky substituent prefers to migrate with retention of configuration. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Lewis acid-catalyzed rearrangement of epoxides to carbonyl compounds is a well-known reaction in organic chemistry.¹ It is generally explained that this reaction proceeds by coordination of a Lewis acid molecule on the oxygen atom, fission of a C–O bond to form an electron-deficient carbon center at the more substituted carbon atom, and migration of a substituent to the adjacent carbon center with concomitant formation of a carbonyl compound. A number of examples have been reported on epoxides embedded in cyclic systems such as steroidal epoxides.² In these cases, the structure of the carbonyl product, including the stereochemistry at the migration terminus, seems to be governed by the rigid conformation of the ring system and would be predictable. In contrast, few studies have been done on the stereochemistry at the migration terminus in the rearrangement of acyclic epoxides.^{3–5} We previously reported the unique results that the hydrogen migrates preferentially with retention of configuration at the migration terminus, whereas an alkyl group migrates exclusively with inversion of configuration in the BF₃·Et₂O-catalyzed rearrangement of acyclic trisubstituted epoxides.⁶ This finding prompted us to study in more detail the mechanism of Lewis acid-catalyzed rearrangement for acyclic epoxides. We describe here our results on the

^{*} Corresponding author. Tel/fax: +81-3-5734-2241; e-mail: fujimoto@cms.titech.ac.jp

mechanism of and, in particular, the steric course of the hydrogen migration in the $BF_3 \cdot Et_2O$ catalyzed rearrangement of acyclic 1,1-disubstituted epoxides to aldehydic products.

2. Results and discussion

In our preliminary studies, optically active epoxides 1 and 2 were individually treated with $BF_3 \cdot Et_2O(0.2-2.0 \text{ equiv.})$ in CH_2Cl_2 or benzene at room temperature, and the resulting aldehydes were analysed to be essentially racemic.⁷ We, therefore, selected the optically active epoxide 3 which bears the tertiary and methyl substituents. To distinguish the two hydrogens and facilitate the analysis of the steric course of the rearrangement, the regioselectively deuterated substrates, (1S,2S)-epoxide 3a and (1R,2S)-epoxide 3b, were synthesized.

The synthesis of the epoxides **3a** and **3b** is outlined in Scheme 1. The aldehyde **4** was converted into the acetylene **5b** and its deuterated form **5a** via dibromoolefin. Carbozirconation of **5b** by Negishi's protocol⁸ followed by quenching with D₂O gave the *E*-olefin **6a** (*E*:*Z* = 16:1). The corresponding *Z*-olefin **6b** (*Z*:*E* = 21:1) was obtained from **5a** by the same procedure, but by quenching with H₂O. Sharpless asymmetric dihydroxylation⁹ of **6a** and **6b** gave the (1*S*,2*S*)-diols **7a** (55% ee) and (1*R*,2*S*)-**7b** (73% ee), respectively. The enantiomeric excesses of **7a** and **7b** were improved by repeated recrystallization of their phthalic half-esters, followed by hydrolysis to give **7a** (86% ee) and **7b** (92% ee). Extension of the methylene chain of **7a** and **7b** was achieved in seven steps to give the diols **8a** and **8b**, respectively.¹⁰ The diols were finally converted into the epoxides **3a** and **3b** via the corresponding mesylates.

Scheme 1. Synthesis of epoxides **3a** and **3b**. Reagents: (i) CBr_4 , Ph_3P ; (ii) nBuLi, H_2O or D_2O ; (iii) Me_3Al , Cp_2ZrCl_2 , D_2O or H_2O ; (iv) $(DHQ)_2PHAL$, $K_2OsO_2(OH)_4$, $K_3Fe(CN)_6$, K_2CO_3 , $CH_3SO_2NH_2$; (v) (a) phthalic anhydride, py, (b) recrystallization, (c) NaOH, MeOH; (vi) $Me_2C(OMe)_2$, pTsOH; (vii) (a) RuCl_3, NaIO_4, (b) CH_2N_2 , (c) LiAlH₄, (d) TsCl, py; (viii) (a) Ph(CH_2)_3MgBr, Li_2CuCl_4, (b) H⁺, MeOH; (ix) (a) MsCl, py, (b) K_2CO_3 , MeOH

Brief treatment of (1S,2S)-**3a** with BF₃·Et₂O (2 equiv.) in CH₂Cl₂ at room temperature afforded a crude product containing aldehyde **9a**-**d** (21% yield).¹¹ A part of the product was reduced with LiAlD₄ to give the corresponding alcohol which was then converted into the (*R*)-MTPA ester **10a**-**d**. The other part of the product was reduced with LiAlH₄ and the resulting alcohol was converted into the same ester derivative **11a**-**d** (Scheme 2).

Scheme 2. $BF_3 \cdot Et_2O$ -catalyzed rearrangement of the epoxide **3a** and analysis of the steric course of the migration of the hydrogen or deuterium atom in the forms of **10** and **11**

The ¹H NMR spectrum of **10a–d** exhibited four broad singlets in the oxymethine/oxymethylene region (δ 4.49, 4.41, 4.03 and 3.95) (Figure 1). Among compounds **10a**–**10d**, only compounds **10a** and **10b** which arose from the migration of the deuterium atom exhibited the oxymethine signals in this spectrum. The two signals (δ 4.41 and 4.03) were assigned to the oxymethine protons of the diastereomers 10a, and the remaining two to those of the diastereomers 10b.¹² The ratio of the compounds, 10a, 10b and 10c+10d (formed by hydrogen migration), was determined to be 31:14:55 on the basis of the signal intensities of the above oxymethine hydrogens by comparison with those of the benzylic methylene hydrogens (δ 2.60). The ¹H NMR spectrum of **11a–d** exhibited eight sets of doublets in the oxymethine region (Figure 1). The two doublets at δ 4.43, 4.05 (J=10.8 Hz) were readily assigned to those of **11a** and the two doublets at δ 4.51, 3.97 (J=10.8 Hz) to **11b** in comparison with the spectrum of **10a–d**. The two doublets at δ 4.04 (J=8.8 Hz)Hz) and 4.42 (J = 3.7 Hz) were assigned to the oxymethine protons of the diastereomers 11c and the last two doublets at δ 3.95 (J=8.8 Hz) and 4.50 (J=3.7 Hz) to those of the diastereomers 11d.⁹ Although the ratio of the signal intensities of these eight doublets could not be accurately obtained due to some overlap of the signals, the ratio (58:42) of $(2 \times 11a + 11c)$ and $(2 \times 11b + 11d)$ was readily obtained from the integration values of their signals. With the aforementioned two sets of ratios in hand, the ratio for **9a:9b:9c:9d** was calculated to be 31:14:22:33.^{13,14}

The deuterium labeled (1S,2S)-epoxide **3b** was similarly treated with BF₃·Et₂O and the resulting aldehyde **9** was analyzed in the forms of the (*R*)-MTPA ester derivatives **10** and **11**. The ratio

Figure 1. ¹H NMR spectra (270 MHz, CDCl₃) of the oxymethylene/oxymethine protons of **10a–d** (left) and **11a–d** (right) derived from the aldehyde **9a–d** obtained from the epoxide **3a**. The signals at δ 4.15–4.36 in the right spectrum are due to impurities

9a:9b:9c:9d = 11:17:50:22 was obtained.¹⁴ One may suspect racemization of the once-formed aldehyde 9 during the reaction conditions. This racemization was found to be negligible by subjecting a synthetic optically active aldehyde¹⁵ to the reaction conditions.

Based on the above two sets of the data for 9a-d, it is deduced that the deuterium migration is retarded by 1.77-fold¹⁶ compared to the hydrogen migration. Thus, the ratio of the four rearranged products corresponding to 9a, 9b, 9c and 9d could be estimated as 41:18:16:25 for nondeuterated epoxide (Scheme 3). This ratio would reflect the relative contribution of four transition conformers A, B, C and D in this order, wherein either hydrogen Ha or Hb is placed in the proper orientation for the 1,2-hydride shift (Scheme 4). The unstable carbocation (conformation \mathbf{E})¹⁷ generated by the C–O bond fission of the epoxide would rotate along the central C–C⁺ axis to give rise to conformers A–D. Out of the two possible directions of the rotation, anti-clockwise rotation seems more preferable than the clockwise, due to the larger non-bonded repulsive interaction between the RCMe₂ and O-BF₃ groups. Among these, conformation A, wherein Hb migrates with inversion of stereochemistry, seems most readily accessible, and conformation **D**, which corresponds to the migration of Ha with retention of stereochemistry, might follow as the next accessible one. Blackett et al. reported that Hb (the hydrogen anti to the bulky substituent) is more susceptible to the migration (by ca. 1.9 fold) than Ha by considering only two conformations A and D in the BF₃·Et₂O-catalyzed rearrangement of a similar 1,1-disubstituted epoxide without information on the steric course of the hydrogen migration.⁴ The reported aptitude was confirmed in the present experiments in which Hb migrated more readily $[1.44 \ (= 59/41) \ fold]$ than Ha.

Scheme 3. The ratio of the rearranged products expected for the non-labeled epoxide

Scheme 4. Four transition conformations A-D for the hydrogen migration, arising from the initially formed conformation E

Concerning the migration of Hb, the retention:inversion ratio (22:50 or 14:31) indicates that conformation **B** which corresponds to the hydrogen migration with retention of stereochemistry has to be considered as well, although its contribution is less than half of that of conformation **A**. Similarly, it was found that conformation **C**, which is responsible for the migration of Ha with inversion of stereochemistry, cannot be ignored on the basis of the retention:inversion ratio of Ha (33:22 or 17:11). It can be summarized that the relative significance of the four transition conformations is **A**, **D**, **B**, **C** in the decreasing order.

In conclusion, the present study has investigated the steric course of each hydrogen in the $BF_3 \cdot Et_2O$ -catalyzed rearrangement of 1,1-disubstituted epoxide for the first time, and established that the hydrogen *anti* to the bulky substituent prefers to migrate with inversion of configuration at the migrating terminus, whereas the hydrogen *syn* to the bulky substituent prefers to migrate with retention of configuration. The relative contribution of the *four* transition conformers in the rearrangement is also estimated.

3. Experimental

3.1. General

All melting points were measured on a Yazawa hot-stage microscope BY-1 and are reported uncorrected. The IR spectra were measured on a JASCO FT-IR200 spectrometer in CHCl₃ solutions and are reported in cm⁻¹. ¹H and ¹³C NMR spectra were recorded on a JEOL EX-400 or EX-270 spectrometer in CDCl₃ solutions and chemical shifts were reported in δ value based on internal tetramethylsilane ($\delta_{\rm H}$ 0.0) or the solvent signal ($\delta_{\rm C}$ = 77.0). ²H NMR spectra were recorded on a JEOL GSX-500 (76.8 MHz) spectrometer in CHCl₃ solutions and chemical shifts are referenced to natural abundance CDCl₃ ($\delta_{\rm D}$ 7.26). EI-MS (70 eV) and high-resolution FABMS spectra were obtained on a JEOL JMS-AX505HA spectrometer.

3.2. $[1-^{2}H]$ -3,3-Dimethyl-4-phenyl-1-butyne 5a

A mixture of PPh₃ (110 g, 419 mmol) and CBr₄ (69.4 g, 209 mmol) in dry CH₂Cl₂ (136 ml) was stirred at 0°C for 10 min. A solution of 2,2-dimethyl-3-phenylpropanal **4** (11.3 g, 69.8 mmol) in CH₂Cl₂ (26 ml) was added and stirring was continued at 0°C for 10 min and then at room temperature overnight. The mixture was filtered by suction and the filtrate was diluted with ether and aq. NaHCO₃. Extractive (ether) workup and chromatography on silica gel (hexane:benzene, 20:1) afforded the dibromoolefin (19.4 g, 87%) as a colorless oil. IR ν_{max} : 2970, 2930, 1600, 1500, 1470, 1450, 1370. ¹H NMR δ : 1.19 (6H, s, 3-CH₃×2), 2.80 (2H, s, 4-H₂), 6.49 (1H, s, 2-H), 7.13–7.31 (5H, m, Ph). ¹³C NMR δ : 27.15, 39.98, 46.63, 85.99, 126.27, 127.89, 130.51, 137.99, 145.86. Anal. calcd for C₁₂H₁₄Br₂: C, 45.32; H, 4.44. Found: C, 45.16; H, 4.37.

*n*BuLi (1.70M hexane solution, 39.1 ml, 66.5 mmol) was added to a solution of the dibromoolefin (10.8 g, 33.9 mmol) in dry THF (45 ml) at -78° C under N₂ and the mixture was stirred for 15 min at the same temperature. D₂O (5.0 ml) was added to this mixture and the whole was stirred for 30 min after removal of the cooling bath. Extractive workup (ether) and chromatography on silica gel (hexane:ether 30:1) gave **5a** (5.07 g, 94%) as an oil. IR ν_{max} : 3300, 3010, 2970, 2930, 2590, 1490, 1450, 1360. ¹H NMR δ : 1.21 (6H, s, 3-CH₃×2), 2.71 (2H, s, 4-H₂), 7.19–7.31 (5H, m, Ph). ¹³C NMR δ : 28.92, 32.00, 48.68, 68.84 (t, J=38 Hz), 90.87 (t, J=7.4 Hz) 126.38, 127.57, 127.67, 130.40, 130.51, 137.92. HR-EIMS (70 eV) calcd for C₁₂H₁₃D: 159.1157 (M⁺). Found: 159.1132.

3.3. 3,3-Dimethyl-4-phenyl-1-butyne 5b

The dibromoolefin (7.92 g, 24.9 mmol) was similarly treated with *n*-BuLi and the reaction mixture was quenched by the addition of water (4.0 ml) in place of D₂O. Extractive workup and chromatography on silica gel gave **5b** (3.62 g, 92%) as a colorless oil. IR ν_{max} : 3305, 3005, 2970, 2930, 2110, 1490, 1460. ¹H NMR δ : 1.20 (6H, s, 3-CH₃×2), 2.10 (1H, s, 1-acetylene), 2.70 (2H, s, 4-H₂), 7.18–7.30 (5H, m, Ph). ¹³C NMR δ : 28.88, 31.97, 48.61, 69.09, 91.23, 126.38, 127.64, 130.37, 130.48, 137.84. HR-EIMS (70 eV) calcd for C₁₂H₁₄: 158.1096 (M⁺). Found: 158.1081.

3.4. [1-²H]-(1R,2S)-2,3,3-Trimethyl-4-phenyl-1,2-butanediol 7**a**

Trimethylaluminum (2.0 M toluene solution, 18.2 ml, 36.3 mmol) was added dropwise to a solution of Cp₂ZrCl₂ (5.33 g, 18.2 mmol) in dry 1,2-dichloroethane (82 ml) at room temperature and the mixture was stirred for 10 min. A solution of acetylene **5a** (2.91 g, 18.3 mmol) in dry 1,2-dichloroethane (15 ml) was added and stirring was continued for 2 days. Extractive (ether) workup and chromatography on silica gel (hexane) afforded a mixture (2.47 g, 77%) of Z-olefin **6a** (E:Z=1:21) and *trans*-1,2-disubstituted olefin as a colorless oil.

A mixture of (DHQ)₂PHAL (590 mg, 0.76 mmol), $K_3Fe(CN)_6$ (13.4 g, 40.6 mmol), K_2CO_3 (5.61 g, 40.6 mmol), $CH_3SO_2NH_2$ (1.29 g, 13.5 mmol) in *t*BuOH (63 ml) and water (68 ml) was vigorously stirred at room temperature for 5 min, and then cooled to 0°C. $K_2OsO_2(OH)_4$ (30 mg, 0.081 mmol) was added and the mixture was further stirred for 40 min. The above olefin (2.37 g, 13.5 mmol) in *t*BuOH (5.0 ml) was added dropwise and stirring was continued at 0°C for 3 days and at room temperature for 2 days. $Na_2S_2O_3 \cdot 5H_2O$ (40 g) was added and stirring was continued for 0.5 h. Extractive (AcOEt) workup and chromatography on silica gel (hexane:AcOEt, 4:1) afforded **7a** (1.70 g, 60%) and 4,4-dimethyl-5-phenylpentane-2,3-diol (1.10 g, 39%) as a white solid. **7a**: mp

45–48°C. IR ν_{max} : 3620, 3560, 3450, 3010, 2970, 1370, 1080, 1040. ¹H NMR δ: 0.84, 0.85 (3H each, s, 3-CH₃×2), 1.30 (3H, s, 4-CH₃), 2.68 (2H, s, 4-H₂), 3.51 (1H, brs, 1-H), 7.13–7.29 (5H, m, Ph). ¹³C NMR δ: 19.88, 21.35, 21.41, 40.21, 42.19, 65.54 (*J*=21.8 Hz), 76.85, 125.83, 127.61, 131.09, 138.85. Anal. calcd for C₁₃H₁₉DO₂: C, 74.60; H+D, 10.11. Found: C, 74.31; H+D, 10.08. The ee of **7a** was determined to be 56% by ¹H NMR analysis of the mono-(*R*)-MTPA ester. ¹H NMR δ: 0.86 (6H, s, 3-CH₃×2), 1.25 (3H, s, 2-CH₃), 1.61–1.71 (1H, br, OH), 2.69 (2H, s, 4-H₂), 3.58 (3H, s, OMe), 4.25 (1H, s, 1-H₁, for (2*S*)-isomer), 4.32 (1H, s, 1-H₁, for (2*R*)-isomer), 7.11–7.59 (10H, Ph).

A mixture of the diol 7a (1.64 g, 7.85 mmol) and phthalic anhydride (1.26 g, 8.51 mmol) in pyridine was stirred at room temperature overnight. Addition of ice chips and extractive (ether) workup followed by chromatography on silica gel (hexane:AcOEt, 4:1) afforded phthalate half-ester as a white solid, mp 128–130°C. The ester was repeatedly recrystallized from hexane and ether to afford an optically enriched ester (1.10 g). Hydrolysis of the ester by treating with 5N aq. NaOH (1.5 ml) in MeOH (10 ml) followed by chromatography on silica gel furnished 7a (580 mg, 35%, 86% ee).

3.5. [1-²H]-(18,28)-2,3,3-Trimethyl-4-phenyl-1,2-butanediol 7**b**

The acetylene **5b** (2.88 g, 18.2 mmol) was subjected to the carbozirconation as described for **5a** and the reaction was quenched by addition of D_2O in place of H_2O . Extractive workup and purification gave a mixture (2.30 g, 72%) of **6b** (*E*:*Z* = 16:1) and *trans*-1,2-disubstituted olefin as an oil.

Asymmetric dihydroxylation of the mixture, as described for **6a**, afforded **7b** (1.71 g, 62%, 74% ee) and 4,4-dimethyl-5-phenylpentane-2,3-diol (603 mg, 24%) as white solids. Compound **7b**: mp 44–47°C. IR ν_{max} : 3630, 3560, 3450, 3010, 2980, 1450, 1370, 1100, 1030. ¹H NMR δ : 0.84, 0.85 (3H each, s, 3-CH₃×2), 1.30 (3H, s, 4-CH₃), 2.68 (2H, s, 4-H₂), 3.81 (1H, brs, 1-H), 7.12, 7.30 (5H, m, Ph). ¹³C NMR δ : 19.93, 21.37, 21.44, 40.24, 42.21, 65.57 (*J*=22.0 Hz), 76.82, 125.88, 127.64, 131.09, 138.85. Anal. calcd for C₁₃H₁₉DO₂: C, 74.60; H+D, 10.11. Found: C, 74.31; H+D, 10.00. The ee of the diol **7b** was increased in the manner as described for **7a**, furnishing **7b** (727 mg, 43%, ee 92%).

3.6. [1-²H]-(1R,2S)-2,3,3-Trimethyl-8-phenyl-1,2-octanediol 8a

A solution of the diol **7a** (515 mg, 2.46 mmol) and acetone dimethylacetal (0.35 ml, 2.86 mmol) in dry CH₂Cl₂ (5 ml) containing *p*-TsOH (3 mg) was stirred at room temperature for 15 min. Addition of NaHCO₃ (powder, 5 mg), removal of the solvent under reduced pressure and chromatography of the residue on silica gel (hexane:AcOEt, 10:1) afforded the acetonide (580 mg, 95%). NaIO₄ (9.6 g, 45 mmol) and RuCl₃·nH₂O (44–45% Ru, 26 mg, 0.12 mmol) was added to a solution of the acetonide (561 mg, 2.25 mmol) in CCl₄:CH₃CN (1:1 v/v, 11.2 ml) and phosphate buffer (NaH₂PO₄:Na₂HPO₄=1:1, 11 ml) was added and the mixture was stirred at room temperature for 36 h. Extractive (CH₂Cl₂) workup and chromatography on silica gel (hexane:AcOEt, 2:1) gave a crude acid. This was treated with excess of ethereal CH₂N₂ and the resulting methyl ester was reduced with LiAlH₄ in dry ether in the usual manner. Extractive (AcOEt) workup and chromatography on silica gel (hexane:AcOEt, 2:1) afforded the alcohol (270 mg, 59%) as a colorless oil.

The alcohol (255 mg, 1.25 mmol) in pyridine (0.90 ml) was treated with TsCl (310 mg, 1.63 mmol) at 0°C for 1.5 h. Extractive (ether) workup and chromatography on silica gel (hexane:AcOEt, 7:1) afforded the tosylate (380 mg, 85%) as a colorless oil.

To a solution of 3-phenylpropylmagnesium bromide, prepared from 3-phenylpropylbromide (1.06 ml, 6.97 mmol), magnesium (170 mg, 6.99 mmol) and THF (5.0 ml), was added Li_2CuCl_4 (0.1 M THF solution; 1.0 ml, 0.10 mmol) and the tosylate (359 mg, 1.00 mmol) in THF (2.0 ml) at $-78^{\circ}C$. After removal of the cooling bath, the mixture was stirred for 4 h. Extractive (ether) workup and chromatography (benzene) on silica gel gave a coupling product (216 mg, 71%) as a colorless oil.

A solution of the coupling product (201 mg, 0.66 mmol) in MeOH (50 ml) and 2N HCl (1.0 ml, 2.0 mmol) was heated at 55°C for 1.5 h. Removal of the solvent under reduced pressure and chromatography of the residue on silica gel afforded **8a** (108 mg, 62%) as a white solid, mp 63–65°C. IR ν_{max} : 3630, 3470, 3010, 2970, 2940, 2870, 1460, 1370, 1030. ¹H NMR δ : 0.87, 0.88 (each 3H, s, 3-CH₃×2), 1.17 (3H, s, 2-CH₃), 1.28 (6H, m, 4,5,6-H₂), 1.63 (2H, m, 7-H₂), 2.08, 2.39 (each 1H, br, OH×2), 2.60 (2H, t, *J* = 7.6 Hz, 8-H₂), 3.38 (1H, brs, 1-H), 7.16–7.30 (5H, m, Ph). ¹³C NMR δ : 19.57, 21.37, 24.17, 30.35, 31.50, 35.96, 36.75, 38.94, 65.46 (*J* = 22.0 Hz), 77.00, 125.55, 128.18, 128.36, 142.73. Anal. calcd for C₁₇H₂₇DO₂: C, 76.93; H+D, 11.01. Found: C, 76.73; H+D, 11.16.

3.7. [1-²H]-(18,28)-2,3,3-Trimethyl-8-phenyl-1,2-octanediol **8b**

Diol **7b** (707 mg, 3.38 mmol) was converted, in the same manner as described for **7a**, into **8b** (125 mg, 14%), mp 71–74°C. IR ν_{max} : 3630, 3460, 3010, 2970, 2940, 2870, 1460, 1380, 1030, 940. ¹H NMR δ : 0.87, 0.88 (each 3H, s, 3-CH₃×2), 1.17 (3H, s, 2-CH₃), 1.28 (6H, m, 4, 5, 6-H₂), 1.63 (2H, m, 7-H₂), 1.90, 2.10 (each 1H, br, OH×2), 2.60 (2H, t, J=7.9 Hz, 8-H₂), 3.67 (1H, brs, 1-H), 7.15–7.30 (5H, m, Ph). ¹³C NMR (67.5 MHz, CDCl₃) δ : 19.59, 21.37, 24.19, 30.37, 31.52, 35.98, 36.75, 38.94, 65.48 (J=21.4 Hz), 77.05, 125.55, 128.19, 128.37, 142.75. Anal. calcd for C₁₇H₂₇DO₂: C, 76.93; H+D, 11.01. Found: C, 76.89; H+D, 11.01.

3.8. [1-²H]-(1S,2S)-1,2-Epoxy-2,3,3-trimethyl-8-phenyl-1-octane **3a**

MsCl (35 µl, 0.45 mmol) was added to a solution of the diol **8a** (100 mg, 0.38 mmol) in pyridine (0.8 ml) at 0°C and the mixture was stirred for 1 h at the same temperature. Extractive (ether) workup gave a crude mesylate which was treated with sat. K₂CO₃ in methanol (1 ml) at room temperature for 5 min. Extractive (ether) workup and chromatography on silica gel (hexane:AcOEt, 10:1) afforded the epoxide **3a** (78 mg, 84%) as a colorless oil. IR ν_{max} : 3020, 2970, 2940, 2860, 1460, 1380. ¹H NMR δ : 0.83, 0.90 (each 3H, s, 3-CH₃×2), 1.26 (3H, s, 2-CH₃), 1.32 (6H, m, 4,5,6-H₂), 1.64 (2H, m, 7-H₂), 2.60 (2H, t, *J*=7.9 Hz, 8-H₂), 2.72 (1H, s, 1-H), 7.14–7.30 (5H, m, Ph). ²H NMR δ : 2.46 (*pro-R*-²H). ¹³C NMR δ : 18.46, 23.17, 23.42, 23.99, 30.14, 31.39, 35.96, 39.73, 50.80 (*J*=25.7 Hz), 61.08, 125.55, 128.18, 128.36, 142.73. HR-FABMS calcd for C₁₇H₂₆DO: 248.2146 (MH⁺). Found: 248.2108.

3.9. (1R,2S)-[1-²H]-1,2-Epoxy-2,3,3-trimethyl-8-phenyl-1-octane **3b**

The diol **8b** (120 mg, 0.45 mmol) was converted, in the same manner as described for **8a**, into the epoxide **3b** (103 mg, 92%) as a colorless oil. IR ν_{max} : 3020, 2970, 2940, 2860, 1460, 1380. ¹H NMR δ : 0.83, 0.90 (each 3H, s, 3-CH₃×2), 1.26 (3H, s, 2-CH₃), 1.31 (6H, m, 4,5,6-H₂), 1.63 (2H, m, 7-H₂), 2.37 (1H, s, 1-H), 2.60 (2H, t, 8-H₂, J=8.0 Hz), 7.13–7.30 (5H, m, Ph). ²H NMR δ : 2.80 (*pro-S*-²H). ¹³C NMR δ : 18.53, 23.20, 23.45, 24.03, 30.17, 31.43, 35.99, 39.77, 50.87 (J=26.9 Hz), 61.12, 125.59, 128.21, 128.39, 142.77. HR-FABMS calcd for C₁₇H₂₆DO: 248.2146 (MH⁺). Found: 248.2105.

3.10. Treatment of the epoxides 3a and 3b with $BF_3 \cdot Et_2O$

 $BF_3 \cdot Et_2O$ (69 µl, 0.55 mmol) was added to a solution of the epoxide **3a** (68 mg, 0.28 mmol) in dry CH_2Cl_2 (6.8 ml) at room temperature and the mixture was stirred for 3 min. Ether and sat. NaHCO₃ were added at once and extractive (ether) workup and chromatography on silica gel (hexane:benzene, 10:1) gave a fraction (30 mg) containing aldehyde 9. Half of this was reduced with $LiAlD_4$ in THF in the usual manner. Chromatography of the crude product on silica gel (hexane:AcOEt, 10:1) afforded an alcohol (7 mg). The other half was similarly reduced with LiAlD₄ to give another alcohol (7 mg). Treatment of the two alcohols with (S)-MTPA chloride in pyridine followed by purification by p-tlc gave the corresponding (R)-MTPA esters 10a-d (7 mg) and **11a–d** (7 mg). Compound **10a–d**: ¹H NMR δ: 0.78–0.92 (9H, m, CH₃), 1.05–1.42, 1.53–1.75 (10.55H, m, CH₂ and CH), 2.60 (2H, t, J=8.1 Hz, PhCH₂), 3.56 (3H, s, OCH₃), 7.23–7.62 (10H, m, Ph). The signals of the oxymethine and oxymethylene region are illustrated in Fig. 1. HR-FABMS calcd for $C_{27}H_{34}D_2O_3F_3$: 467.2742 (MH⁺). Found: 466.2739. Compound **11a–d**: ¹H NMR δ : 0.79-0.92 (9H, m, CH₃), 1.05-1.40, 1.50-1.76 (10.55H, m, CH₂ and CH), 2.60 (2H, t, J = 8.1 Hz, PhCH₂), 3.56 (3H, s, OCH₃), 7.13–7.58 (10H, m, Ph). The signals of the oxymethine and oxymethylene region are illustrated in Fig. 1. HR-FABMS calcd for C₂₇H₃₅DO₃F₃: 466.2679 (MH⁺). Found: 466.2673.

The epoxide **3b** (93 mg, 0.38 mmol) was treated with $BF_3 \cdot Et_2O$ in the same manner as described for **3a** and the aldehyde was converted into **10a–d** (9 mg) and **11a–d** (11 mg). Compound **10a–d**: ¹H NMR δ : 0.79–0.89 (9H, m, CH₃), 1.04–1.38, 1.53–1.75 (10.72H, m, CH₂ and CH), 2.60 (2H, t, J=8.1 Hz, PhCH₂), 3.55 (3H, s, OCH₃), 3.92–4.05 (0.06H, m, CH₂ and CDH), 4.38–4.56 (0.01H, m, CH₂ and CDH), 7.12–7.56 (10H, m, Ph). HR-FABMS calcd for C₂₇H₃₄D₂O₃F₃: 467.2742 (MH⁺). Found: 466.2744. Compound **11a–d**: ¹H NMR δ : 0.80–0.88 (9H, m, CH₃), 1.05–1.38, 1.55–1.75 (10.72H, m, CH₂ and CH), 2.60 (2H, t, J=8.1 Hz, PhCH₂), 3.56 (3H, s, OCH₃), 3.92– 4.10 (0.10H, m, CH₂ and CDH), 4.38–4.56 (0.21H, m, CH₂ and CDH), 7.12–7.56 (10H, m, Ph). HR-FABMS calcd for C₂₇H₃₅DO₃F₃: 466.2679 (MH⁺). Found: 466.2651.

References

- For Lewis acid-mediated epoxide rearrangements, see: Maruoka, K.; Hasegawa, M.; Yamamoto, H.; Suzuki, K.; Shimazaki, M.; Tsuchihashi, G. J. Am. Chem. Soc. 1986, 108, 3827–3829; Suzuki, K.; Miyazawa, M.; Tsuchihashi, G. Tetrahedron Lett. 1987, 28, 3515–3518; Maruoka, K.; Ooi, T.; Yamamoto, H. J. Am. Chem. Soc. 1989, 111, 6431–6432; Maruoka, K.; Nagahara, S.; Ooi, T.; Yamamoto, H. Tetrahedron Lett. 1989, 30, 5607–5610; Maruoka, K.; Ooi, T.; Nagahara, S.; Yamamoto, H. Tetrahedron 1991, 47, 6983–6998.
- Kirk, D. N.; Hartshorn, M. P. Steroid Reaction Mechanisms; Elsevier Publishing Co.: Amsterdam, 1968; pp. 353– 372.
- Coxon, J. M.; Lim, C. Aust. J. Chem. 1977, 30, 1137–1143; Bach, R. D.; Lucast, D. H. J. Chem. Soc., Chem. Commun. 1979, 593–594.
- 4. Blackett, B. N.; Coxon, J. M.; Hartshorn, M. P.; Richards, K. E. J. Am. Chem. Soc. 1970, 92, 2574–2575.
- 5. Maruoka, K.; Nagahara, S.; Ooi, T.; Yamamoto, H. Tetrahedron 1992, 48, 3303-3312.
- Fujimoto, Y.; Kanzawa, Y.; Ikuina, Y.; Kakinuma, K.; Ikekawa, N. J. Chem. Soc., Chem. Commun. 1989, 1107– 1109; Fujimoto, Y.; Ikuina, Y.; Kanzawa, Y.; Nagakari, M.; Kakinuma, K.; Ikekawa, N. Heterocycles 1990, 30, 275–278.
- 7. For example, treatment of (S)-1 with 0.2 equiv. of $BF_3 \cdot Et_2O$ in CH_2Cl_2 afforded 2-methyl-7-phenylpentanal with (2R):(2S) = 52:48.
- 8. Negishi, E.; Van Horn, D. E.; Yoshida, T. J. Am. Chem. Soc. 1985, 107, 6639-6647.

- Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.; Moriyama, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J. Org. Chem. 1992, 57, 2768–2771.
- 10. BF₃·Et₂O treatment of the epoxide which was prepared from 7a in two steps (mesylation and K₂CO₃ treatment) afforded a mixture of products, probably formed by benzyl group participation. The ee of compound **8a** could not be increased by recrystallization via the phthalic half-ester derivative. The detour route was selected due to these reasons.
- 11. The epoxide was consumed under this reaction condition. Attempts to increase the yield of the aldehyde were not successful. For example, when the reaction was carried out at a lower temperature (0°C), an increased amount of fluorohydrin was produced. Use of a reduced amount of BF₃·Et₂O (0.2 equiv.) led to a similar result.
- 12. The chemical shifts were assigned by comparing the ¹H NMR data with those of stereochemically defined synthetic compounds; (2*R*)-5-phenyl-2,3,3-trimethylpentanol (*R*)-MTPA ester showed oxymethylene proton signals at δ 4.62 (dd, *J*=11.0, 3.7 Hz), 4.07 (dd, *J*=11.0, 8.7 Hz), while the (2*S*)-counterpart showed the corresponding proton signals at δ 4.54 (dd, *J*=11.0, 3.7 Hz), 4.14 (dd, *J*=11.0, 8.7 Hz). The ¹H NMR data for the (*R*)-MTPA ester of non-deuterated racemic 10: (2*R*)-isomer δ: 4.52 (dd, *J*=10.7, 3.7 Hz), 3.97 (dd, *J*=10.7, 9.2 Hz); (2*S*)-isomer δ: 4.54 (dd, *J*=10.7, 3.7 Hz), 4.05 (dd, *J*=10.7, 9.2 Hz).
- 13. The percentages of 10c (x=22) and 10d (y=33) were obtained by solving the following two simultaneous equations: x+y=55 and $42\times(31\times2+x)=58\times(14\times2+y)$.
- 14. The presence of the antipode in the epoxide substrate was not considered.
- 15. (2*R*)-5-Phenyl-2,3,3-trimethylpentanal was subjected to the reaction conditions.
- 16. The deuterium isotope parameter z was determined to satisfy 31z:14z:22:33 = 50:22:11z:17z.
- White, J. C.; Cave, R. J.; Davidson, E. R. J. Am. Chem. Soc. 1988, 110, 6308–6314; Nakamura, K.; Osamura, Y. J. Phys. Org. Chem. 1990, 3, 737–745.